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It has been shown /l/ that if the potential energy of a mechanical system 
is an analytic function of the form 

V(q) = V,(q) + Vm+l(q) +. ” (n > 2) 
where V, are polynomials of degree i, then the equilibrium position q == 0 
is unstable for odd m. Instability has also been proved for even m /2/ 
on the assumption that q=o is not a local minimum point of Vnl (qJ. 
In this paper, with suitable additional assumptions, using the procedure 
employed in /2/, we shall prove instability in some cases when m is even 
and V7n (q) is positive definite. 

Consider a mechanical system with n degrees of freedom described by a Lagrange function 

r,(q,q')='!2q'TA(q)q.-V(q), qER" (1) 

where A is a symmetric positive-definite nxn matrix and V is the potential energy. The 
equations of motion are 

The Lagrange-Dirichlet Theorem states that the equilibrium position q= o is stable if 
v (0) = 0 is a strict local minimum of V /3/. 

The immediate inversion of this theorem is false, as shown in /4/ for a system with one 
degree of freedom having V(O) = 0, V(q! = exp !-1/d cos (l/e) if q# 0. Letting B, denote an open 
sphere of radius E, we notice that this potential has the following property: for any E>O 
there exists a connected open set G:OE:GCT:CR, such that V(q)>0 on aG. Even this 
property, which is weaker than the positive definiteness of 8, is not necessary for stability 
in Rn/5/. 

There remains the assumption that the equilibrium is unstable if V is analytic and does 
not have a minimum at the origin. Numerous results of this kind have been established; 
references to most of them may be found in /6-8/. 

Without claiming to provide a complete list, we will recall some of these results. Let 

V(q) = V, (9) + V,,l (9) + cm > 2) 
where V, are homogeneous polynomials of degree i. If V,(q) is negative definite or if 
m=2 and V,(q) may take negative values, the inversion was established by Lyapunov /9/. 
If V,(q)>0 and only one of the Poincare coefficients vanishes, the inversion was proved by 
Koiter /lo/. Some inversion results have been based on the following fundamental lemma of 
Chetayev /ll/, which guarantees instability if 

1) e=(q:V(q)<O)=#=O>OEa8 
2) (qlaviaq) <o on a8 
As an immediate corollary of this lemma one can prove instability in the case when V == 

Vm (cl) is homogeneous or there exists k> 2 such that Vi (q)>O for z<k and V, (q) d 0 
for k>i /ll/. Condition 2 is not always satisfied in reality, even if V has a strict local 
maximum at q= 0. This case was studied in /7/ for v f c= /6/ and for functions v E C' 
such that V(0) is a non-strict local maximum /12/. 

We note that Chetayev's lemma was strengthened in /5/, where condition 2 was replaced 

by 
3) (PI aV/aq) + cV (9) < 0 on EI,O<ar<? 

and also by Chetayev himself Ill/, who used a vector field f(q) of C' smoothness on 9 in 

436 



437 

P such that f(O)=O, fi(o)g(O) is a positive definite matrix, with the condition 
4) (fj aVMq)<O on 6 

instead of condition 2. 
This condition will be used quite frequently in what iollows. It was used in /3/, where 

the inversion theorem in its entirety was proved for two degrees of freedom, on the assumption 
that R (0) is the identity matrix and Vlql is an analytic function which takes negative 
values in any neighbourho~ of the origin. The same result was obtained independently in 
/14f, while the condition A (O)= I was eliminated in 1151. For n= 2 and an analytic 
function V with a non-isolated minimum at q ~0, an attempt to prove the theorem was made 
in /lb/. 

Instability was proved for the case of arbitrary n and a non-analytic potential in /13/, 
under the following assumptions: 

A (q) = I, where I is the nx n identity matrix. 

V(q) = Vm (qf + A (q), m > 2, R' (0) = . . = IP) (0) = 0 

The function V,,, (ql is non-degenerate. 
Instability was established in /17/ on the assumption that y is quasihomogeneous or 

semi-quasihomogeneous and A (0) = I. The first of these results extends a result of /II/ 
for V= V,, the second generalizes the aforementioned result of /13/ to the.case in which V 
is analytic. In /la/ the condition A(O)= I was eliminated under an additional assumption 
and the result of 1131 was slightly generalized. 

Instability was established in /I.! under rather simple assumptions: m>2 and is odd. 
Finally, instability was proved in 121 for arbitrary ~~32 provided only that V,(s) can 
take negative values, i.e., without requiring that v,,, be non-degenerate. This remarkable 
result almost settles the inversion question for analytic potentials. The only remaining 
open question is: what happens if V (9) = V*, (9) +.... with Vra (q)>O and V(0) not a local 
minimum? Instability was proved in /19/ on the assumption that Ii=&‘+- V,+...,V2>0 and vm 
takes strictly negative values on the hypersurface (V,(q)= 0). In the sequel, using exactly 
the same procedure as in /2/, we shall obtain some instability results in the case V= V41,+..., 

P> 1. 

Retaining the previous notation, let us assume that A (4) and V(q) are analytic 
and 

A (q) =I + CPM T(O) = 0, v(q) = v,,(n) f k's,+, (4) +.'.., rn>s 

where VK is a homogeneous polynomial of degree k, D’V, its partial derivative of order 1. 

Theorem 1. If the following conditions hold: 
1" V,,(q)> 0 in R", S = {q: V,,(q) = 0); 

2* 3e c.5 S, /I e II = 1, V,,+, (9 = rnin {V,,+, (cl): Ii 9 II = If -=c 0 i 

3" DY,,(e)=O for r-2,3,4; 

4O (~(s)illq1l~+Oas q+O, 

then the equlibrium of Eqs.(Z) at q = 0 is unstable. 

PPOOf. By condition 4", Eqs.(Z) may be written in the form 

q"+ G(q,q') + v(q) =o (3) 

v (9) = em (4 + Vkm+2 b-f) + _x_ “k (9) 

where G is an analytic and quadratic function of q’ and v k 
degree k. 

are homogeneous polynomials of 
We can now follow the usual procedure /2/. Let F be the space of the formal series 

q(t)= _>zi ajj(ln(t)) tei"', aii E Rn, i, j=O, $, . . . 

Let PF denote the space of the series tvq, qEF. We are going to construct a formal 
solution q6zt1- l’mF of Eqs.(3), determining the coefficients ail by induction - forward 
induction on j and backward on i. The induction process begins from the first term 

9% (t) = U&'fi" 

Substituting q =ql@) on the left of Eqs.(3), we obtain a series 

Vim (u,~) t-“+*fm + ((l/m) (l/m i- 1) aoL) + Vi;m+s (a&l t-2-x/m + . . . . 

(the dots stand for terms of degree t strictly less than _._2 -Urn). The first two coefficients 
of this series vanish if one takes a,, 2 ae, where a is a suitable real number and e is 
defined as in condition 2O. Indeed, since eE S, Vzm(ae) == 0 is the absolute minimum of V,, 
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and so VL,,,(ae) = 0. The second coefficient vanishes if 

(l/m) (l/m + 1) ae ~- V,,,, (e)~?*'+~ = 0 

By condition 2' there exists a real number C>G such that Vi,,,+z(e) = --ce. Consequently, 
it will suffice to take 

a = ((m -1 l)l(cm2))1'""' 

Now, putting a,,=ae and 

Yz==91" + G (q,, a') + "(q,) 
we obtain 

y2 E t-:-'!"F 

and Y2 contains no terms of degree t higher than -2 -21m. Now assume for the induction 
step that for some integer N> 2 we have found a series 

such that 

YN = $4 + c (qN-1, &-I) + v (qN-I) 

lies in the space t-?-““‘F and contains no powers of t higher than -2 - N!m. Our problem 
now is to construct a series such that YN+l lies in the space t-z-l/"'F and contains no 
powers of t higher than -2 -(N + 1)/m. To that end we put 

IqN=‘W-l+Aq, Aq= mj<N_, aN-I, j(ln t)it-N'm 2 

Then 

YN+l = YN + 4” + [vim (qN) - v;r,, (qN-1) 1 + [v,m+, (qN) - v;m+z (qN-I,] t 

[G (WY qN’) - G h-1> Skd + ,,& t”k (qN) - vk (qN-I)] 

The right-hand side of (4) is exactly the same as in /2/, except for the expression in 
the first pair of brackets. Since G is quadratic in q‘ and vk are homogeneous polynomials 
of degree k, it is obvious from the Taylor expansion at the point (qN_l, q&_,) that the l&St 
two expressions in brackets in (4) contain no powers of t higher than -2 - (N + 1)/m. 

The expression in the second pair of brackets in (4) may be rewritten in the form 

vim+, (qN-1) Aq + = v;m+, (9,) 4 -I- . . . 

where the dots stand for terms of degree t strictly less than -2-Nlm and the degree of 

VZ,+Z (9) is -2 - Nlm. 
We will now take a closer look at the expression in the first pair of brackets, which 

does not appear in /2/. Expanding it in Taylor series in the neighbourhood of qN-1 and 
neglecting high-order terms as usual, we express it as 

D'V,,(qN-1)Aq + '/PV,,(qN-l)Aq2 + ‘/aD’V, (qN_1) (Aq)3 + . . . . 

where the dots stand for powers not exceeding -2 +5/m - 4Nlm, hence not exceeding -2 -(N -t 
1)/m. If N=2 the terms written out in (5) vanish by condition 3'. If N> 2, we 
expand D”V,,(qN_J (k = 2,3,4) in Taylor series in the neighbourhood of ql. Using condition 3", 
we obtain, to within the same higher-order terms, 

D2V2m (SN-1) = '.'PYmt (sl) (W-l - q# + . 

D"V,m (qN-1) = '/PVm (Sl) ((IN-l) - 9,)' -t . . 

D* Vzm h-l) = D"V,m (sl) (qN-1 - 9,) + . . 

Since D6V2,,, (qr) contains powers of t with exponent of at most -2 -!- 5/m, and since 
the degrees of ((IN-1 -9,) are at most -2/m, the highest power of t appearing in DkVsm is 
-2 - Urn, -2 +-Urn, -2 +3/m for k =z 2,3,4, respectively. But Aq has degree -Nlm and 
N> 2. Thus, all the terms in (!I), and hence all the terms in the first bracketed expression 
in (4), have a degree in t of at most -2 - (N +1)/m. 

By the induction hypothesis YN does not contain powers of t higher than -2 - Nlm. 
Letting s denote the sum of terms including t-‘&N,m in yN, we exclude all terms of degree 

-2 -N/m in YN+~, solving the equation 

Aq" + I’;,,,+* (q,) Aq=--z = ,lsN_,zj (111 t) t-“-N/n’ (‘3) 
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This equation is the same one as in /2/, and all arguments presented there are valid 
for (6). For completeness, we will complete the construction of the formal solution, repeating 
those arguments. The highest degree of the logarithm on the right of (6) is equal to the 
integer part of (N - 1)/m, i.e., M = [(N - l)/ml. Collecting the terms of this degree we 
obtain 

(N/m) (N/m + 1) UN-l,M + ~,m+, (ae) aN-1.m = %, (7) 

This equation has a unique solution aN-1, my provided that (-N/m). (Njm +I) is not 
an eigenvalue of Vim+, (ae). The tensor Vi,,,+, (ae) is symmetric and all its eigenvalues are 
real. 

The vector e is an eigenvector with eigenvalue -((m +4)/m) (2m +1)/m. Indeed, by Euler's 
Theorem 

2m+l 
'I',,,+,(ae)e = a VL+z(ae)= 

Zrnflmfi -_-e 
m m 

The space orthogonal to e is tangent to the unit sphere at e. Since V,,,,, (e) is a minimum 
on the unit sphere, all the eigenvalues corresponding to this space are non-negative. Thus 
Eq.(7) has a unique solution if N# m + 1. 

If N# m f 1, we substitute Aq into Eq.(6) with the coefficient a~_~,,,, obtained from 
Eq.(7), the other coefficients aN-1, i remaining undetermined. Then the terms involving 

(In t)M will vanish in Eq.(6). To eliminate the terms involving (In Q”-‘, we solve the 
equation I 

(N/m) (N/m + 1) UN-],I-1 f V,,,, (ae) aN_l,M_1 = &, 

where b-1 is a known quantity which depends on ZM-1 and aN_1,M, An (M + 1) -fold 
repetition of the same procedure will solve Eq.(6). 

Thus 

We will now consider the exceptional case N=m+l,M = 1, when 

q, = & a,,t-(i+i)lm, Aq = (a,, + an,l In t)t-(l+Um) 

Neither Ym+1 nor the right-hand side of Eq.(6) contains terms involving logarithms. 
the equation may be written in the form 

Aq" + Vi,,n+, (qi) Aq = (he + I) t-3-1l”’ (8) 
where h is a real number and f a vector orthogonal to e. We will split (8) into equations 
for the components e and f. Since all the eigenvalues of V"((ae) corresponding to a space 
orthogonal to e are non-negative, the equation 

(1 + l/m) (2 + l/m) um,p-lim + V” *m+z (a) %d -1-1,,,1= ft-3-W 

has a unique solution a,,, which is orthogonal to e. The remaining equation 

- t3 -f 2:m) am1 + I(1 + l/m) (2 + l/m) + Vim+, (~$1 In ta,, = he 

holds for a,,,, = --).e/(3 + 2!m). This completes the construction of the formal solution. 
It was shown in detail in /2/ that the formal solution converges to a solution of Eq.(3). 

The only difference in the present case is the extra term v,nl (cl) in the potential. Most 
of the algebra in /2/ are not affected by the introduction of this additional term and may be 
represented here without any alteration; we will therefore omit them. 

Only one argument in /2/ needs some attention because of the extra term V,,. The 
formula 

tZ (V,m+, (a) - v’ (q&J = v;m+, (a,,) - L+2 (Pq,) - 
t-l’“‘V;“,+* (Pq*,) + . . . 

(9) 

where the dots stand for powers of t with exponents less than -Urn, yields an estimate 
0 (t-'lm + t-l In t) for the norm of the operator in (9) for large t. 

We shall show that the addition of VV',, to the Dotential does not change this estimate. 
Clearly, 

and 

Pmq, = a,, + a,ot-l’m _t . . . + azn,_l,ot-2+1~” + 
a,,Pln t + . . . + a,m-l,lt-2+1’m In t 

By condition 3', 
t-1,m 

the Taylor expansion of V,, at a,, begins 
and t-'ln 1. Thus, for large t, 

with terms of degree 3 in 
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tv~ (qpm) = 0 (elm + 1-l In t) 
and we obtain the same estimate for the norm of the operator in (9) as in /2/. 

Thus the solution we have constructed converges and the instability of the origin follows 
from the existence of an asymptotic solution. 

Remark 1. Theorem 1 generalizes the results obtained in /2/ in the case q tRn. Indeed, 
if VSl,,rO, the conditions lo and 3O are automatically satisfied, 4O is unnecessary and 2O 
follows from the previous assumptions in /2/. 

Remark 2. The applicability of Theorem 1 is of course limited by the fact that condition 
3" for the non-zero function Vz,, requires m>3. In addition, the method employed to prove 
the theorem does not work if the minimum of V,,,, on the unit sphere lies outside the domain 
V,, (4) > 0. This becomes clear if one considers the positive definite potential 

v = ti - 4z+ya + 5y'= 

and the potential 

which makes the equilibrium position unstable (see /l/). 
The method is not applicable when Vi,,, (e)e=hV,,(e)# o and the condition V&(e) = 0, which 

appears in the proof, fails to hold. We note that the condition V;,(e)= 0 here is equivalent 
to the condition VZ, (e) = 0 or e E s. 

Theorem 1 may be applied if m>3 and the variables appearing in VZ,,,+S differ from 
those appearing in V,,, e.g., if 

Appendix 1. Recalling the procedure used to prove Theorem 1, we can extend that theorem 
to the case V(q)= vZk(q)+...+ V,+,(q) + V,,,, (q)$ . . . . replacing conditions lo-4" by the following 
alternatives: 

5" V,,+,(q) has a strictly negative local minimum on the unit sphere; 
6" D’V, (e) = 0, 2k < i < 2m + 1, i < j < 4 + 2m - i ; 
7” w (q)/ 1 q 12'n-2k+i - 0 as q - 0. 

Note that it follows from the condition DlV,(e)= 0 that e lies in the sets v, (q) = 0 (i = 
Zk, . . ..Zm+ 1). These conditions are not equivalent to those of Theorem 1, where k= m. We 

note, moreover, that the functions V,,, rrzk + v&+,, ., v%k + + vsm+l are not necessarily always 

positive. 

Appendix 2. A slight modification, analogous to that outlined above, makes Theorem 1 
applicable to the case 

v(q) '= r;k CC,) t- + ~'a,, (9) $ 1;,+1 (9) +. 

when the negative part of the potential is determined by a term of odd degree (zm i- I). This 
is done by adopting the following assumptions instead of lo-4": 

8' v,?n+, (9) has a strictly negative local minimum on the unit sphere; 

9" D+,(e)= 0, 2k < f< Zm, 1 <j < 3+ 2m - 1; 
10" cp (q)/ 1s 12m--9k+1 - 0 as q - 0. 
The proof is very similar to that presented above and need not be reproduced in full. 

The first approximation to the solution of Eq.(l) will be 

q, (t) = a&i'. a0 E Rn, p = 2/(2m - 1) 

a0 = ae, ~1m-~c = 2 (2m + 1) (2m - i)-', Vim+l (e) = --ce 

Consider the space of formal series 

P =- (q (1)= x,-c, ai E H", i = 0, 1, .) 

and assume that for N>2 we have found an (N - I)-th approximation 

qN_* (t) = t-v (IQ + l2,t-P + . f nN_2 t++) 

in PF such that 

YN = qN__l+G(qN-l' q&l) +v (q&L1) 

is a member of t-2-PF and involves no powers of t with exponent greater than -Z-i+. Then 

we choose qN=qN_,+Aq, Aq= a~_r'-~' 

such that rN+r is in 1 -z'pp and involves no powers of t with exponent greater than -z--(N+l) P. 
To complete the proof we need only solve the equation 

2%'~ (Np $ 1) a~_~ + v;,,,,, (ae) uN-l = z 110) 
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where x. is a term of degree -2-~?rp in yN. The operator ~;,,,+~(a@ has exactly one negative 

eigenvalue corresponding to the eigenvector e; it is (-4m) (2m + 1) (2m - 1)-s. It can be 
verified that for any positive integer N the number (-NP)(Npil) is not an eigenvalue of 
vim,, (a@. Consequently, Eq.(lO) has a unique solution for any positive integer N and the 
formal solution can be constructed in t+F. 

To show that this formal solution in fact converges, we repeat the arguments of /2/, 
replacing the quantities m and p= ml2 -1 appearing in /2/ by 2m+i and m-'I*-- 1/p, 
respectively, and omitting the logarithms throughout. Condition 9" implies the continuing 
validity of the estimates in /2/ despite the extra term (t;kt...+ VA in the potential. 
This completes the proof. 

Comparing the reasoning with Theorem 1, we observe that the formal solution in Appendix 
2 does not contain logarithmic terms. This simplification is possible because there are no 
critical values of N in Eq.(lO), whereas Eq.(7) of Theorem 1, unlike (lo), has a critical 
value N=m+1. which generates logarithmic terms. 
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Finally, we note that lf V&= . ..= V,,sgO, condition 10" may be dropped and condition 
is automatically valid. 
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